Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options

نویسندگان

  • Ning Cai
  • Nan Chen
  • Xiangwei Wan
چکیده

In this paper, we provide Laplace transform-based analytical solutions to pricing problems of various occupation-time-related derivatives such as step options, corridor options, and quantile options under Kou’s double exponential jump diffusion model. These transforms can be inverted numerically via the Euler Laplace inversion algorithm, and the numerical results illustrate that our pricing methods are accurate and efficient. The analytical solutions can be obtained primarily because we derive the closed-form Laplace transform of the joint distribution of the occupation time and the terminal value of the double exponential jump diffusion process. Beyond financial applications, the mathematical results about occupation times of a jump diffusion process are of more general interest in applied probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

First Passage times of a Jump Diffusion Process

This paper studies the first passage times to flat boundaries for a double exponential jump diffusion process, which consists of a continuous part driven by a Brownian motion and a jump part with jump sizes having a double exponential distribution. Explicit solutions of the Laplace transforms, of both the distribution of the first passage times and the joint distribution of the process and its ...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Option Pricing Under a Double Exponential Jump Diffusion Model

Analytical tractability is one of the challenges faced by many alternative models that try to generalize the Black-Scholes option pricing model to incorporate more empirical features. The aim of this paper is to extend the analytical tractability of the BlackScholes model to alternative models with jumps. We demonstrate a double exponential jump diffusion model can lead to an analytic approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2010